Se p 20 07 Convergent Iterative Solutions of Schroedinger Equation for a Generalized Double Well Potential ∗

نویسنده

  • W. Q. Zhao
چکیده

We present an explicit convergent iterative solution for the lowest energy state of the Schroedinger equation with a generalized double well potential V = g 2 2 (x − 1)(x + a). The condition for the convergence of the iteration procedure and the dependence of the shape of the groundstate wave function on the parameter a are discussed. PACS: 11.10.Ef, 03.65.Ge ∗Work supported in part by the U.S. Department of Energy

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Solution for Generalized Sombrero - shaped Potential in N - dimensional Space ∗

An explicit convergent iterative solution for the lowest energy state of the Schroedinger equation with generalized N -dimensional Sombrero-shaped potential is presented. The condition for the convergence of the iteration procedure and the dependence of the shape of the groundstate wave function on the parameters are discussed. PACS: 11.10.Ef, 03.65.Ge

متن کامل

New Ways to Solve the Schroedinger Equation ∗

We discuss a new approach to solve the low lying states of the Schroedingerequation. For a fairly large class of problems, this new approach leads to convergentiterative solutions, in contrast to perturbative series expansions. These convergentsolutions include the long standing difficult problem of a quartic potential witheither symmetric or asymmetric minima. PACS: 11.10.E...

متن کامل

Iterative algorithm for the generalized ‎$‎(P‎,‎Q)‎$‎-reflexive solution of a‎ ‎quaternion matrix equation with ‎$‎j‎$‎-conjugate of the unknowns

In the present paper‎, ‎we propose an iterative algorithm for‎ ‎solving the generalized $(P,Q)$-reflexive solution of the quaternion matrix‎ ‎equation $overset{u}{underset{l=1}{sum}}A_{l}XB_{l}+overset{v} ‎{underset{s=1}{sum}}C_{s}widetilde{X}D_{s}=F$‎. ‎By this iterative algorithm‎, ‎the solvability of the problem can be determined automatically‎. ‎When the‎ ‎matrix equation is consistent over...

متن کامل

Generalized iterative methods for solving double saddle point problem

In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version  of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008